Second Order Filters

From PrattWiki
Revision as of 13:47, 20 March 2021 by DukeEgr93 (talk | contribs) (Created page with "This page is currently a sandbox for things related to second-order filters. == General Form == For the cases below, we will be looking at specific examples of second-order f...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This page is currently a sandbox for things related to second-order filters.

General Form

For the cases below, we will be looking at specific examples of second-order filters, and in each case we will turn on specific components of a general second-order filter by setting $$K_H$$, $$K_B$$, and $$K_L$$ to a non-zero value in:

$$ \mathbb{H}(s)=\frac{K_H(s^2)+K_B(2\zeta \omega_ns)+K_L(\omega_n^2)}{s^2+2\zeta \omega_ns+\omega_n^2} $$

Band-Pass

For the band-pass filter, with $$K_B$$ set to some non-zero value and $$K_H$$ and $$K_L$$ both set to zero, the transfer function becomes:

$$ \mathbb{H}_B(s)=\frac{K_B(2\zeta \omega_ns)}{s^2+2\zeta \omega_ns+\omega_n^2} $$

or, as a Fourier transform,

$$ \mathbb{H}_B(j\omega)=\frac{K_B(2\zeta \omega_n(j\omega))}{(j\omega)^2+2\zeta \omega_n(j\omega)+\omega_n^2} $$

which is the form we will use here.

To analyze this transfer function more easily, we can divide through by the $$2\zeta\omega_n(j \omega)$$ term to get:

$$ \begin{align*} \mathbb{H}_B(j\omega)&=\frac{K_B}{\frac{j\omega}{2\zeta\omega_n}+1+\frac{\omega_n}{2\zeta j\omega}}\\ ~&=\frac{K_B}{1+\frac{j\omega}{2\zeta\omega_n}+\frac{\omega_n}{2\zeta j\omega}}\\ ~&=\frac{K_B}{1+\frac{j}{2\zeta}\left(\frac{\omega}{\omega_n}-\frac{\omega_n}{\omega}\right)}\\ \end{align*} $$

At this point, we introduce a new quantity, the quality factor of the filter $$Q$$, where $$Q=\frac{1}{2\zeta}$$, such that:

$$ \begin{align*} \mathbb{H}_B(j\omega)&=\frac{K_B}{1+jQ\left(\frac{\omega}{\omega_n}-\frac{\omega_n}{\omega}\right)}\\ \end{align*} $$